首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3062篇
  免费   481篇
  国内免费   764篇
测绘学   234篇
大气科学   291篇
地球物理   609篇
地质学   1655篇
海洋学   544篇
天文学   495篇
综合类   142篇
自然地理   337篇
  2024年   2篇
  2023年   19篇
  2022年   89篇
  2021年   104篇
  2020年   113篇
  2019年   112篇
  2018年   106篇
  2017年   133篇
  2016年   160篇
  2015年   163篇
  2014年   194篇
  2013年   175篇
  2012年   187篇
  2011年   261篇
  2010年   161篇
  2009年   234篇
  2008年   200篇
  2007年   214篇
  2006年   209篇
  2005年   195篇
  2004年   187篇
  2003年   190篇
  2002年   140篇
  2001年   119篇
  2000年   95篇
  1999年   94篇
  1998年   91篇
  1997年   46篇
  1996年   56篇
  1995年   54篇
  1994年   34篇
  1993年   26篇
  1992年   28篇
  1991年   21篇
  1990年   19篇
  1989年   17篇
  1988年   18篇
  1987年   6篇
  1986年   4篇
  1985年   7篇
  1984年   7篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   4篇
  1976年   1篇
  1954年   1篇
排序方式: 共有4307条查询结果,搜索用时 15 毫秒
1.
2.
作为重要的土壤物理性质,膨胀性在影响土壤导水性、持水性、抗蚀性以及土壤结构的形成和发育等方面发挥着重要作用。为了探讨生物土壤结皮(BSCs)土壤的膨胀特性及其主要影响因素,针对黄土高原风沙土和黄绵土两种典型土壤,利用膨胀仪测定并比较了有、无藓结皮及其在不同因素(初始含水量、干湿循环、冻融循环、温度)下膨胀率的差异,分析了BSCs对土壤膨胀性的影响及其与环境因素和BSCs性质的关系。结果显示:风沙土上藓结皮的膨胀率为1.93%,较无结皮增加了8.65倍;而黄绵土上藓结皮的膨胀率为2.05%,与无结皮相比降低了76.68%。藓结皮的生物量和厚度与其膨胀率在风沙土上均呈线性正相关关系(P < 0.05),在黄绵土上分别呈二次函数(P=0.02)和线性正相关关系(P=0.02)。初始含水量同时影响了土壤最大膨胀率和稳定膨胀时间,影响程度风沙土远大于黄绵土(包括藓结皮和无结皮);干湿循环次数对无结皮土壤膨胀率的影响程度大于藓结皮土壤,其中风沙土和黄绵土上无结皮的膨胀率分别是50.00%~620.00%和-2.28%~10.81%,而两种土壤上藓结皮的膨胀率分别是-5.70%~10.88%和-10.24%~-21.46%;冻融循环下4种土壤的膨胀率均有不同程度的降低,降幅为0~18.54%。黄绵土无结皮的膨胀率受温度影响程度较大,50℃下黄绵土无结皮的膨胀率分别是25℃和35℃下的1.17倍和1.21倍。BSCs显著地改变了风沙土和黄绵土表层的膨胀性,其影响的程度和方向取决于土壤类型。同时,BSCs的膨胀性受含水量、温度、干湿以及冻融循环等关键因素影响。  相似文献   
3.
本文以成矿地质模型为依据,对观驾山—黑山岛一带的化探、物探、遥感及地质等信息变量进行了详细的分析,选取了10个信息变量24个标志状态;在此基础上,运用信息量法对研究区内458个单元的信息量值进行计算,并由此确定了研究范围内的成矿远景区。事实表明,研究区信息量成矿预测是非常有效的  相似文献   
4.
5.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
6.
Reconnaissance seismic shot in 1971/72 showed a number of well defined seismic anomalies within the East Sengkang Basin which were interpreted as buried reefs. Subsequent fieldwork revealed that Upper Miocene reefs outcropped along the southern margin of the basin. A drilling programme in 1975 and 1976 proved the presence of shallow, gas-bearing, Upper Miocene reefs in the northern part of the basin. Seismic acquisition and drilling during 1981 confirmed the economic significance of these discoveries, with four separate accumulations containing about 750 × 109 cubic feet of dry gas in place at an average depth of 700 m. Kampung Baru is the largest field and contains over half the total, both reservoir quality and gas deliverability are excellent. Deposition in the East Sengkang Basin probably started during the Early Miocene. A sequence of Lower Miocene mudstones and limestones unconformably overlies acoustic basement which consists of Eocene volcanics. During the tectonically active Middle Miocene, deposition was interrupted by two periods of deformation and erosion. Carbonate deposition became established in the Late Miocene with widespread development of platform limestones throughout the East Sengkang Basin. Thick pinnacle reef complexes developed in the areas where reef growth could keep pace with the relative rise in sea level. Most reef growth ceased at the end of the Miocene and subsequent renewed clastic sedimentation covered the irregular limestone surface. Late Pliocene regression culminated in the Holocene with erosion. The Walanae fault zone, part of a major regional sinistral strike-slip system, separates the East and West Sengkang Basins. Both normal and reverse faulting are inferred from seismic data and post Late Pliocene reverse faulting is seen in outcrop.  相似文献   
7.
Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll?1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ΣCO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments.  相似文献   
8.
9.
We present a quantitative star formation history derivation of the four suspected tidal dwarf galaxies in the M 81 group: Holmberg IX, BK3N,Arp-loop (A0952+69) and Garland using HST/WFPC2 images of these galaxies. We construct a library of synthetic Colour-Magnitude Diagrams(CMDs) based on theoretical isochrones and data-derived determinations of photometric errors. These synthetic CMDs were combined linearly andχ2-compared to observed photometry. All the galaxies show continuous star formation between about 20 and 200 Myr ago with star formation rates between 7.5⋅10-3 M/yr and 7.67⋅10-4 M/yr. The metallicity of the detected stars is spanning rather a wide range, being lower than solar abundance. We suppose, that all the galaxies were formed out of material from metal-poor outer part of the giant spiral galaxy M81after tidal interaction about 200 Myr ago. However, this suggestion requires significantly more deep color-magnitude diagrams to be sure with the scenario of the galaxy evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
10.
Y.C. Minh  W.M. Irvine   《New Astronomy》2006,11(8):594-599
The large-scale structure associated with the 2′N HNCO peak in Sgr B2 [Minh, Y.C., Haikala, L., Hjalmarson, Å., Irvine, W.M., 1998. ApJ 498, 261 (Paper I)] has been investigated. A ring-like morphology of the HNCO emission has been found; this structure may be colliding with the Principal Cloud of Sgr B2. This “HNCO Ring” appears to be centered at (l,b) = (0.7°,−0.07°), with a radius of 5 pc and a total mass of 1.0 × 105 to 1.6 × 106 M. The expansion velocity of the Ring is estimated to be 30–40 km s−1, which gives an expansion time scale of 1.5 × 105 year. The morphology suggests that collision between the Ring and the Principal Cloud may be triggering the massive star formation in the Sgr B2 cloud sequentially, with the latest star formation taking place at the 2′N position. The chemistry related to HNCO is not certain yet, but if it forms mainly via reaction with the evaporated OCN from icy grain mantles, the observed enhancement of the HNCO abundance can be understood as resulting from shocks associated with the collision between the Principal Cloud and the expanding HNCO Ring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号